

Coaxial Pneumatic Valve

Presented by Aadam Awad and Skylar Bogdanowitsch

Agenda

 $Performance \rightarrow Mechanics \rightarrow Materials \rightarrow Manufacturing \rightarrow Iteration$

Performance

Why?

- Amateur rockets without active guidance require very high thrust-to-weight ratios (TWR)
- Engines must be designed to have high thrust & low burn time
- For hybrid rocket engines, this means large mass flow rates through the main oxidizer valve

Role of the Run Valve

- Oxidizer run valve opens once at engine startup
- Enables full thrust before this state, the igniter is building a flame front in the engine

Legacy Valve (22-23)

- Low mass flow rate (upstream flow constriction)
- Slow actuation time (~ 1s)
- 316 Stainless Steel instrumentation valve, 125 kg-cm servo → heavy
- Required fittings and adapters for integration, increased overall length

High-Level Requirements

- Support 2.29 kg/s (3.5 L/s) nitrous oxide mass flow rate (+ margin)
 - Based on Valkyrie Mk II performance parameters
- Achieve subsecond actuation maximizes acceleration off-the-rail
- Lightweight servos and steel are heavy
- Compact (axially and radially) to minimize vehicle length
- Either available commercially (for cheap) or machineable in-house

Acceptance Criteria

- Low-leakage seal
- Enables target mass flow rate
- < 10 psi pressure drop
- Lighter than commercially available solutions
- Compact, enables small interstage

Mechanics

Early Ideation

Oxidizer Tank

Oxidizer Tank

Injector

Injector

Force Balance

- Overcome nitrous static pressure + spring force + o-ring friction
- Cannot have large outer diameter
 - Interferes with other components in the interstage
- Double-acting capability
 - Designed for the spring to close the valve
 - In testing, the spring was not strong enough; a 10-32 pneumatic port w/ ~ 100 psi easily closed the valve
- Simple formulas used
 - $F_{c} = [(Cavity radius)^{2} (Piston radius)^{2}] \cdot \Pi \cdot P_{vapor}$
 - $F_P = [(Piston radius)^2 (Orifice radius)^2] \Pi P_{liquid}$
 - $\circ \qquad \Sigma F = F_{C} F_{P}$

O-Ring Friction Modeling

- Used empirical coefficients from Parker ORD handbook
 - Compression friction based on required o-ring squeeze to form a seal
 - Hydraulic friction based on o-ring extrusion under pressure
- First order model
 - Lacked expertise to control surface roughness, lubrication level, etc. during machining and test
- Combined Hooke's law, o-ring model, and piston force balance
 - Found actuation time and velocity using Euler integration
 - Used for dynamic FEA of piston hard stop
 - 17.5 ms predicted actuation time, 56 fps hardstop

	import numpy as np
2	import sys
	<pre>sys.setrecursionlimit(100000)</pre>
	# All values in units of lbs, lbf, or in
	ff = 54.16
	fp = 474.42
	xi = 0.27
	xf = 0.77
10	k = 46.66
11	mp = 0.125
12	
13	dt = 0.00001
14	
15	def main (x, v, t):
16	F = fp - ff - k * x
17	<pre># print(F)</pre>
18	a = F/mp
19	vn = v + a * dt
20	xn = vn*dt + x
21	tn = t + dt
22	if $(xn < xf)$:
23	return main (xn, vn, tn)
24	return xn, tn, vn
25	
26	print (main(xi, 0 ,0))

Simulations

- Performed Ansys Fluent CFD simulations of compressible and incompressible flow
- Found simulated pressure drop
- Particle count limited due to student license

Materials

Overview

- 6061-T6 aluminum selected due to weight, cost, and machinability
 - Not as safe with LOX or GOX, but we use nitrous oxide and this isn't a cryogenic valve
- PTFE selected as the seal material
 - Exceptional machinability
 - Extensive public documentation
 - Univ. of Waterloo had previous success with a similar valve design

Design for Manufacturability

- At Columbia we are fortunate to have access to a 4-axis Haas ST-20Y lathe and 3-axis Haas Mini-Mill
- Knowledge is passed down through successive generations of students (shoutout Ryan Wu)
- We machined all coaxial pneumatic valve components
 - Great learning opportunity
 - Saved us a LOT of money
- Minimal new tooling and no custom tooling (\$\$\$)

Spring Sizing & PTFE

- Spring is required to maintain seal during fill
- Apollo-era NASA documentation cited 4 lbf per linear inch of circumference for PTFE
 - NASA leak testing performed using 400 psi of Helium
 - Empirical value from Marquardt Corporation c. 1965
 - Study initially done for hypergolic service valves on Apollo
- This gave a minimum spring force of 12.6 lbf
- Additional margin was provided for up to 30 lbf
- Selected spring based on these parameters
 - k = 46.67 lbf/in
 - Free length = 2"
 - Compressed length = 1.325"

Manufacturing

Tolerancing

- Sealing surfaces had .005" profile tolerance
 - Based on Parker ORD table
- MMC and LMC applied where possible (e.g. piston ID, valve body non-sealing surfaces)
- Tolerance stackup caused leakage in early iterations

Machining

- Material Aluminum 6061
- Every component of the valve was made in house
- Machined using Haas ST-20Y and Haas Mini-Mill

Fun Workarounds

Iteration

Testing

- Seal testing
 - The point contact area was too large not putting enough force at one point to create a seal
 - The outer piston was hitting the aluminum of the seal seat, not sealing with the PTFE

Seal Seat Iteration

• Included a spacer to increase the static force of the spring

Seal Seat Iteration

• Changed the angle of the PTFE seat so there is only 1 point of contact.

Actuation Testing

• Failure in meeting tolerances while machining built up and caused a failure in actuation

Results

from too cold to too warm

Total impulse (pound*sec): 5475.930986888257 Total liquid mass flow (kg/sec): 140996392.91924715

Future Work

- Pressure drop
 - Data from static fires shows -100 psi pressure drop
 - Unphysical result, requires further testing to fully quantify performance
- Flight testing
 - Coming tomorrow!
- Throttling?
 - Enhancing double-acting capability to have variable states