

Cryogenic Liquid Oxygen Valves

System Overview

- Regulated pressure LOX feed system
- Requires 3 cryogenic oxygen valves
 - Run valve: normally closed, high flow main oxidizer valve
 - Fill/Drain valve: normally open, low flow fill and drain valve
 - GOX vent valve: normally open, high flow GOX vent
- Balances:
 - Oxygen safety
 - Cryogenic reliability
 - Manufacturability
 - Mass
 - Cost
 - Design for assembly

CSI Rockets - Fluids System P&ID Liquid Oxygen Regulated Pressure

Component Requirements

	Run Valve	Fill/Drain Valve	GOX Vent Valve
Working Fluids	LOX, LN2, Water	LOX, LN2, Water	GOX/LOX
MEOP	700 psi	700 psi	700 psi
Designed Pilot Pressure	250 psi	250 psi	700 psi
Implemented Pilot Pressure	700 psi	700 psi	700 psi
Sealing Duration	1 hour	30 minutes	30 seconds
Actuation Speed	< 20 ms	N/A	< 100 ms

Components Experience

- Team has previously developed a pyrovalve (21-22) and coaxial pneumatic valve (23-24) for nitrous oxide
- 1 YOE with pneumatics
- No club experience machining large stainless steel parts
- No club experience with cryogenics
- No club experience with oxygen, liquid or gas

Static Seal Qualification

- Integrated with welded 6061-T6 pressure vessel qualification for cryogenic operation.
- Static PTFE o-ring face seals and Viton o-ring piston seals.
- Saved > \$1500
- Hydrostatic testing up to 1,925 psi
- Liquid nitrogen testing to 250 psi
- Results:
 - Static PTFE o-ring face seals with 35-40% compression sealed adequately.
 - Static Viton o-ring piston seals did not seal, required injector design rework.
 - PTFE o-rings were single use, but still significantly more cost effective than spring loaded seals for static applications.

COTS Dynamic Reciprocating Seals

- Spring-energized seals consist of an outer layer of sealing material
 (PTFE) supported by metal springs
- Cryo temps → PTFE contraction → spring extension
- Pressure assisted and unidirectional
- Requires two piece design for installation, not elastic like o-rings are
- Expensive, fragile, and limited sizes available

Why Custom?

- Cryogenic LOX solenoid valves are expensive and hard to procure
- Pneumatically actuated ball valves are bulky and heavy, not ideal for vehicles
- Ex: Large diameter pneumatically actuated ball valve
 - 4.79" increase in length
 - 2.75 lb increase in mass
 - Additional complexity for COTS
 pneumatics with lower MEOP

Poppet Valve Summary

Fill/Abort Valve, Normally Open

LOX Tank LOX Tank

LOX Umbilical

Pilot Line

Pilot Line

Vent Valve, Normally Open

Force Balance

	Fill/Drain Valve	GOX Vent Valve
Eq. Orifice Size	0.250"	0.354"
Spring Force, Closed	12.5 lbf	10.5 lbf
Sealing Force, 250 psi	101 lbf	30.5 lbf
Sealing Force, 700 psi	283 lbf	85.3 lbf

Challenge: Due to high flow rate requirements, the GOX vent valve experiences significant hysteresis with small inlet and pilot pressure differences.

Additional Poppet Valve Design Challenges

- Inclusion of a 0.010" flow restrictor to flow to the regulator, giving the vent valve time to seal
- When the poppet seals, the exposed outer sealing surface ices over
- Operationally constrains the vehicle to a single fill/drain cycle per cryo cycle, valves do not adequately reseal after 10+ minutes exposed to ambient air.
- Tolerance stackup on small diameter poppets required a sharper knife edge to account for concentricity offsets

Component Validation

Run Valve Design

Run Valve Overview

- Controls cryogenic high pressure liquid oxygen (MEOP 700 psi)
- Design burst FOS of 3, proof tested to 1.5
- Pneumatically actuated open at T-0
- 1" Orifice delivers 2.5 kg/s of LOX to the combustion chamber
- Minimal pressure drop (~1 psi)
- Height: 4.1in
- Weight: 3.5 lbs
- Total # of seals: 9

Material Selection

- Passivated 303 Stainless Steel construction
 - o 303 is more machinable than 304 and 316
 - Similar oxygen resistance to 304
- COTS passivated 302SS ground springs
- PTFE static and dynamic seals
 - o O-rings and custom face seals for static sealing
 - V-spring energized seals for dynamic reciprocating sealing

Design

- Spring pushes piston into PTFE valve seat, sealing at the knife edge
 - Validated sealing method from 23-24 valve
- Spring-assisted seals are not flexible, flanges are needed at each seal for installation
- To prevent ice formation, PTFE o ring face seals are placed on each flange

Simulation

CFD

- Simulated 2.5 kg/s of LOX flowing through valve
- Pressure drop ~1-2 psi across valve
- Maximum velocity ~6 m/s

Manufacturing

Machining

- All 18 valve components were machined by the team
- Machined using Haas ST-20Y and Haas Mini-Mill
- Spring-assisted seals required tight tolerances (0.006" diametric tolerance)
- Careful attention to concentricity and parallelism while machining valve bodies was necessary to ensure piston fit snugly without rubbing
- Several small components could be done in one operation using
 4-axis functionality, improving geometric tolerances and saving time

Testing & Validation

Hydrostatic Pressure Testing

Cold Flows & Cryogenic Testing

Static Fire!

Results

- Hydrostatic testing revealed no significant leakage and structurally proofed all three valves to 1.5x MEOP
- Initial cold flow attempts had significant leakage in the run valve during low pressure cryo fill

Troubleshooting and Iteration

Fill/Abort Valve Seal Seat

Failure Investigation

- The geometry of the run valve seat seal allowed the PTFE to thermally contract away from the piston
- The other valve seats face *inward*, leading to greater interference and better sealing after contraction
- The force balance on the run valve piston at cryo was not sufficient to push the piston further into the PTFE as it contracts

Future Development

- No sensor data to quantify valve pressure drop
- Greater environmental resilience to icing
- Less reverse leakage through spring-loaded seals